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Abstract: When the process is highly uncertain, even linear minimum phase systems must 
sacrifice desirable feedback control benefits to avoid an excessive ‘cost of feedback’, while 
preserving the robust stability. In this paper, the control structure of supervisory based 
switching Quantitative Feedback Theory (QFT) control is proposed to control highly 
uncertain plants. According to this strategy, the uncertainty region is suitably divided into 
smaller regions. It is assumed that a QFT controller-prefilter exits for robust stability and 
robust performance of the individual uncertain sets. The proposed control architecture is 
made up by these local controllers, which commute among themselves in accordance with 
the decision of a high level decision maker called the supervisor. The supervisor makes the 
decision by comparing the candidate local model behavior with the one of the plant and 
selects the controller corresponding to the best fitted model. A hysteresis switching logic is 
used to slow down switching for stability reasons. Besides, each controller is designed to be 
stable in the whole uncertainty domain, and as accurate in command tracking as desired in 
its uncertainty subset to preserve the robust stability from any failure in the switching. 
 
Keywords: Switching Supervisory Adaptive Control, Robust Control, Quantitative 
Feedback Theory. 

 
 
 
1 Introduction1 
According to Quantitative Feedback Theory, the 
feedback control is only justified to reduce the closed 
loop sensitivity to any kind of uncertainty, in the plant 
modeling or in the unmeasurable disturbances  [1]. Thus, 
the amount of feedback is directly proportional to the 
amount of uncertainty and to the sensitivity reduction 
required. Besides, a unique controller cannot perform as 
well for a wide uncertainty plant set as for a smaller 
domain of uncertainty. 

QFT is a powerful design methodology that provides 
a transparent trade-off between different often 
conflicting design specifications. It suggests a controller 
with minimum cost of feedback that satisfies the set of 
performance specifications in spite of the plant 
uncertainty  [2],  [3]. Let’s consider the loop transfer 
function L(jω) = G(jω) P(jω). Using sufficiently large 
feedback (i.e. |L|>>|P|) the effect of the plant uncertainty 
and of the disturbances could be diminished. On the 
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other hand, any practical L(jω) must go to zero as 
ω →∞, but robust stability implies that |L| decreases 
relatively slowly with ω,  [4]. Therefore, there is an 
intermediate frequency range where the excessive loop 
bandwidth due to feedback benefits amplifies sensor 
noise or disturbances at the plant input. This effect, 
which is called “cost of feedback”, results in the useful 
signal components of the input commands cannot pass 
into due to the saturation of elements of G and P. 

For a highly uncertain process, in which parametric 
uncertainties are very large, finding a single controller 
that can deal with the entire range of parameter 
variations may be impossible or imply a poor 
performance. Therefore, the uncertainty reduction 
remains as the only solution. An infinite uncertainty 
division translates into classical adaptive control 
schemes where a particular controller is responsible for 
a unique plant identified in the uncertain domain. In 
order to overcome the limitations of adaptive control 
and to design a satisfactory control system in the 
presence of large modeling uncertainties, noise, and 
disturbances, a hierarchical control structure can be 
used. The control structure consists of a bank of 
candidate controllers supervised by a logic-based 
switching  [5]. 
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In each fixed, predetermined region of uncertainty, 
the local controller can achieve the desired performance. 
Switching is made between the local controllers to 
support all range of uncertainties. The overall control 
architecture consists of a bank of controllers (multi-
controllers), and a supervisor. The supervisor is also 
composed of a bank of models (multi-estimators), a 
monitoring signal generator, and a switching logic. At 
each time instant, a high level decision maker, the so 
called supervisor, determines which controller should be 
placed in the feedback loop. In other words, when the 
estimation of the plant is changed, a new controller may 
be selected, which is similar to the idea of adaptive 
control. But unlike the traditional adaptive control 
strategies, this adaptation takes place in a discrete 
fashion. As a result, the overall closed loop system can 
be viewed as a hybrid system. 

One of the main advantages of the supervisory 
control is its modularity  [5]. Designing multi-estimators, 
multi-controllers, and switching logic can be done 
mutually independent. This feature enables the designer, 
to use “off-the-shelf” robust control laws. Based on this 
idea, in  [6], a multi-model adaptive PID controller is 
developed and evaluated in a simulation study for a 
nonlinear pH neutralization process. A methodology 
that blends robust non-adaptive mixed μ-synthesis 
designs and stochastic hypothesis-testing concepts is 
introduced in  [7]. 

In  [8], linear limitations of linear robust controllers 
overcame by combining switching and QFT. Combining 
robust designs and switching, the designed controller 
optimizes the time response of the system by fast 
adaptation of the controller parameters during the 
transient response based on the error amplitude  [8]. 

This paper shows the feedback tracking control 
limitations due to the uncertainty size in LTI minimum 
phase plants. These are discussed from the QFT bounds, 
computed with the formulas developed in  [9]. The goal 
is to divide the uncertainty. Then, several QFT 
controllers are employed to attain robust stability and 
performance requirements despite uncertainties and 
disturbances. They also improve the feedback benefits 
and minimize the cost of feedback in their uncertainty 
subset. A supervisory architecture orchestrates 

controller selection. This selection is based on the 
values of monitoring signals. To preserve robust 
stability despite of failure in the switching, each 
controller will be designed robustly stable for the full 
uncertainty range and as accurate in set-point tracking 
as desired in its uncertainty subset. This problem is also 
tackled in  [10]. 

This paper is organized as follows: Section 2 
examines fundamentals of QFT with the nature and 
severity of the QFT bounds. It also mentions the 
difficulties in loop shaping, revealing the limitations in 
the tracking feedback performance. In Section 3, 
switching supervisory control is reviewed. Our 
proposed design structure is described in Section 4. 
Simulation results and conclusions are made in Sections 
5, and 6, respectively. 

 
2 Quantitative Feedback Theory 

The general QFT feedback structure is shown in Fig. 
1. 

The blocks to be designed by QFT in Fig. 1 are the 
controller and the pre-filter. 

The QFT design, performed in the frequency 
domain, follows very closely classical designs using 
Bode plots. The model for the open-loop dynamics can 
either be fixed or include uncertainty. If the problem 
requires that the specifications be met with the uncertain 
dynamics, it is called a robust performance problem. 
That is, the performance specifications must be satisfied 
for all possible cases admitted by the specific 
uncertainty model  [11]. 

Several performance specifications could be placed 
on any single loop closed loop relation. Some of the 
typical specifications considered in QFT are as follows: 
• gain and phase margins 
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• classical 2-DOF QFT tracking problem 
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Fig. 1. The two-degrees of freedom structure of QFT [3]. 
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• rejection of disturbance at plant output 
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• rejection of plant input disturbances 
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where Wsi denotes the maximum tolerance model on the 
magnitude of certain transfer function from some inputs 
to some outputs in the frequency domain which is 
correspond to an specification placed on the magnitude 
of the transfer function. Then, to design the controller 
G(jω), QFT translates these frequency domain 
specifications of an uncertain feedback system into 
bounds on the Nichols Chart that the nominal loop 
transmission Lo(jω) must meet. Therefore, the bound 
arrangement is the key point in the controller synthesis 
process. 

The necessary trade-offs among conflicting closed 
loop requirements are discussed in terms of QFT bounds 
in  [9]. 

The loop-shaping Lo =GPo (Po is the nominal plant) 
performed on the bound arrangement such that the QFT 
bounds are satisfied which result in the demanded 
performance specifications. 

Robust stability bound makes |L| decreasing 
comparatively slowly with ω. Thus, there is an 
intermediate range where |L(jω)|<<1 but |L/P(jω)|>1 (to 
remove the effect of the plant ignorance). That means a 
dangerous amplification of the noise N at Y and U. 
Satisfyingly small output deviations can be achieved 
with available instrumentation. However, large |L/P| 
peaks produce unavoidable large peaks in control input 
U  [12], which is the main price paid for feedback, also 
referred in QFT as the ‘cost of feedback’  [1]. A large 
cost may saturate elements of G and P, in such a way 
that the useful signal components due to input 
commands cannot get through. 

3 Switching Supervisory Control 
In supervisory control of uncertain systems, the 

basic idea is to discretize the uncertainty set into a finite 
number of nominal values and then employ a family of 
controllers, one for each nominal value. Switching 
among the controllers is orchestrated by a supervisor in 
such a way that closed-loop stability is guaranteed. The 
benefits gained by this approach include (i) simplicity 
and modularity in design: controller design amounts to 
controller design for known linear time-invariant 
systems for which various computationally efficient 
controller design tools are available; (ii) ability to 
handle larger classes of systems than is possible with 
other approaches (see  [5] for more discussion). 

We quickly review here the supervisory control 
framework for adaptively controlling plants with large 
modeling uncertainty (see Fig. 2); for details, see e.g. 
( [13], Chapter 6),  [14] or  [5] and the references therein. 

Consider an uncertain linear plant Mp parameterized 
by a parameter p where p* denotes the true but unknown 
parameter: 
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where x ∈ Rn_x is the state, u ∈ Rn_u is the input, and y 

∈ Rn_y is the output. The parameter p* ∈ Rn_p belongs to 

a known finite set P: = {p1, … , pm}, where m is the 
cardinality of P. It is assumed that (Ap, Bp) is 
stabilizable and (Ap, Cp) is detectable for every p∈ P. 

The supervisor comprises a multi-estimator, 
monitoring signals, and a switching logic. The 
estimator-based supervisory control design for the 
system (1) is briefly outlined below: 
 

 

 
Fig. 2. The supervisory control framework [13]. 
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• Multi-estimator: A multi-estimator is a collection 
of models, one for each fixed parameter p ∈ P. The 
multi-estimator takes in the input u and produces a bank 
of outputs yp, p ∈ P. The multi-estimator should have 
the following matching property: there is p̂ ∈ P such 
that 

( ) ( )00ˆ
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ˆ )()( 0 tytyectyty p
tt

ep
e −≤− −−λ  (2) 

for all t ≥ t0, for all u, and for some ce ≥ 0 and λe > 0. 
One such multi-estimator for (1) is the following 
dynamics 
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for all p ∈ P, and the property (2) is satisfied 
with p̂ = p*. The matrix Lp in (3) is such that the 
eigenvalues of Ap+ LpCp have negative real parts for 
each p ∈ P. (since (3) with p = p* and (1) imply that 
(d/dt)(xp*−x) = (Ap+LpCp) (xp*−x) and y=Cp* x). 

• Multi-controller: A family of candidate 
controllers {Gp} is designed such that the closed loop 
system meets the desired robust stability and 
performance specifications for every p ∈ P. Then the 
family of controllers is 

,pu p ∈ P . (4) 

• Monitoring signals: Monitoring signals μp, p ∈ P 
are norms of the output estimation errors, yp − y. Here, 
the monitoring signals are generated as  
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for some γ, ε0, λ > 0. The numbers γ, ε0, and λ are 
design parameters and need to satisfy 

0 < λ < λ0  (6) 

for some constant λ0 related to the eigenvalues of the 
closed-loop system (for details on λ0, see  [13]). 

• Switching logic: A switching logic produces a 
switching signal that nominates the active controller at 
each time instant. In this paper, we use the scale 
independent hysteresis switching logic  [15]: 
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where h > 0 is called a hysteresis constant and is a 
design parameter that prevents excessive switching. 
Both in theory and in practice, it is important that 
excessive switching be avoided. The use of a hysteresis 

term conveniently satisfies this requirement. The control 
signal applied to the plant is u(t) = uσ(t). 

 
4 Switching Supervisory QFT Control 

Combining switching and QFT was first introduced 
in  [8] to prioritize some specifications over others 
according to the state of the system at each time. 
Switching is used to select the appropriate controller, 
which is determined based on the error amplitude. Two 
controllers are used: the fast, more stable and imprecise 
controller is used when the output is too far from the 
reference, or equivalently when the error amplitude is 
large. When the error is small, a controller, which 
reduces the bandwidth, is used to avoid the effects of 
noise, and meanwhile to increase the low frequency 
gain in order to minimize the jitter and the tracking 
error. 

In that method, both of the controllers are supposed 
to have the same poles, so that graphical stability 
criteria can be utilized. This constraint limits the type of 
controllers and therefore the performance of the system. 
So, a more general approach is introduced to overcome 
this limitation. 
 

4.1  Problem Formulation 
In the case of highly uncertain plants, two distinct 

cases can occur: 
• A single QFT controller exists for the entire 
uncertainty range. However, the closed loop 
performance may not be improved further as desired. 
• A single QFT controller does not exists to ensure 
closed loop robust stability and performance. 

In both cases, the QFT strategy needs improvements 
to fulfill the practical design requirements and to meet 
the challenges of the control of difficult highly uncertain 
plants. 
 

4.2  Class of Admissible Plants 
The goal is to design a control system, which can 

track a predetermined set point in case of plant 
uncertainty and disturbances. The plant is assumed to be 
modeled by a stabilizable and detectable SISO linear 
system with control input u and measured output y, 
perturbed by a bounded disturbance input d. It is also 
assumed that the plant transfer function belongs to a 
known class of admissible transfer functions of the 
form: 

: p
p∈

= ∪
P

M M  

where p is a parameter taking values in some index set. 
Mp is also a family of transfer functions “centered” 
around some known nominal process model transfer 
function νp  [16]. Allowable unmodeled dynamics 
around the nominal process model transfer functions νp 
could be specified as: 
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{ }, ,: (1 ) : , ,p p m a m av λ λδ δ δ ε δ ε∞ ∞= + + ≤ ≤M  

where ε > 0 and λ ≥ 0 are two arbitrary numbers. Here, 
║.║∞,λ denotes e λ t-weighted H∞ norm of a transfer 
function: ║v║∞, λ := supRe[s]≥0 │v(s- λ)│  [16]. 

Throughout the paper, we will take P to be a 
compact subset of a finite-dimensional normed linear 
vector space. 

By this definition, the entire region of plant 
uncertainty is partitioned into a set of smaller regions. 
Each smaller region is presented by a parameter value p, 
and Mp is a model of the plant in that small region.  

Considering all permissible uncertainties and 
disturbances in each smaller region, a controller is 
designed to perform robust stability and robust set point 
tracking specifications, via QFT. 
 

4.3  Multi-Estimator and Multi-Controller 
A state-shared multi-estimator of the form 

,,, yyexCyuByLxAx ppEppEEEEE −==++=�  (8) 

where p ∈ P, and AE an asymptotically stable matrix, is 
utilized here. This type of structure is quite common in 
adaptive control ( [17]). Note that even if P is an infinite 
set, the above dynamical system is finite-dimensional. 
In this case the multi-estimator formally has an infinite 
number of outputs; however they can all be computed 
from xE. Here we use state-sharing not only to generate 
the estimation errors ep, but also in the monitoring signal 
generator for μp. 

For practical reasons the bank of local controllers 
can be efficiently implemented (multirealized) by means 
of a state-shared parameter dependent feedback system. 
The provided method can implement bumpless transfer, 
which is an effective way to improve poor transient 
response of switched systems  [17],  [18]. 
 
5 Simulation Results 

In this section, a practical example is used to 
illustrate the proposed design method. Consider a DC 
field-controlled motor, whose nominal parameters are 
given in Table 1. Assuming that the angular velocity Ω 
is the plant output to be controlled, and the field voltage 
Vf is the manipulated variable, the transfer function 
corresponds to the DC motor is ( [19]): 
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where the electrical time constant Lf /Rf is ignored 
compared to the mechanical time constant J/b (see 
Table 1). Due to temperature variations and some other 
effects, the motor parameters may differ from the 
nominal values. Therefore, a 20% variation in b and a 
5% deviation in K from their nominal values are 
considered in this example. Moreover, the larger 
difference for this real application relates to the rotor 
inertia J. Its value is expected to change between 
J = 0.01 as the nominal value which is correspond to no 
load and J = 0.1 as the full load condition, respectively. 

The closed-loop desired specifications for speed 
control are: 

(1): Robust stability in terms of a margin 
specification (L is the loop gain) 

0,3.1
1

>≤
+

ω
L

L  

This would indicate a gain margin and phase margin 
of 4.9dB and 45deg respectively. 

(2): Robust tracking specification enforced to  
ωh  = 10 rad/sec. 
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GP

GPFTr +
=

1
 is the transfer function from 

reference input to the output. 
(3): A low enough high frequency loop gain to 

reduce the ‘cost of feedback’, e.g. |L(jωhf)| < -20 dB,  
ωhf  ≥ 100 rad/sec. 

The main steps involved in the design of the QFT 
controllers, such as template generation, loop shaping, 
pre-filter design, manipulation of tolerance bounds 
within the available freedom, template size 
considerations and selection of nominal transfer 
functions all require much experience and expertise. In 
  [20] the various steps of quantitative designs are 
reformulated and presented in terms of appropriate cost 
functions and respective algebraic constraints. The 
resulting nonlinear constrained optimization problem 
can easily be solved using the Genetic Algorithm. Here, 
the QFT designs are adopted from  [19]. The QFT 
controller and pre-filter, which is designed for the whole 
uncertainty range, are the followings: 

 
Table 1 Nominal Parameter Values for a DC Field-Controlled Motor 

Symbol Parameters Nominal values 
J No Load Rotor Inertia (kg m2) 0.01 
b Friction (N m s) 0.1 

Km Motor Constant (N m/A) 0.05 
Rf Field Resistance (Ω) 1 
Lf Field Inductance (H) << 0.1 
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Note that the controller should have a pole at the 
origin to avoid steady state tracking error. 

In this case, a single QFT design could not cover the 
whole uncertainty range. It is impossible to find a QFT 
controller-prefilter that meets explicit bounds on 
stability and tracking specifications in (1) and (2), and 
that cuts off simultaneously the implicit cost of 
feedback in (3). This performance limitation was argued 
in Section 2. 

Fig. 3 simulates the time domain performance of the 
aforementioned QFT design for the plant with J=Jmax, 
b=bmax, K=Kmin. This is the plant with more difficulties 
to track the input signal since it represents the biggest 
load and friction for the smallest motor constant; and it 
needs the maximum control effort value; this plant is 
also the nominal plant taken in the QFT design. 
Nevertheless, the worst saturation effects (higher cost of 
feedback) occur in the plant with the biggest |L|, that is, 
the plant which corresponds to J=Jmin, b=bmin and 
K=Kmax. Fig. 3(a) shows an acceptable tracking 
performance for J=Jmax, b=bmax and K=Kmin. However, 
the sensor noise is highly amplified at the control input 
as Fig. 3(b). The situation deteriorates for J=Jmin, b=bmin 

and K=Kmax (Fig. 4(b)). In practice, this huge cost of 
feedback saturates the armature core, spoiling the 
expected performance in Fig. 3(a) as shown by Fig. 
4(a). 

The cost of feedback can be reduced by relaxing the 
tracking specifications. In other words, the cost of 
feedback reduction is not for free. It also implies 
spoiling the control tracking performance. The solution 
planned in this paper is the division of the uncertainty. 
Thus, switching QFT design is implemented to 
overcome this difficulty. 

An identifier-based estimator ΣE for this system may 
be constructed of the following form as in  [17]. 
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where (AE, bE) a stable parameter-independent, 
controllable pair, and 
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is a stabilizable realization of M(s). A state-shared 
implementation of this multi-estimator is then used in 
the supervisor. 

It is possible to construct a multi-estimator ΣE for 
this example by picking any one-dimensional 

controllable pair (AE, bE) with AE stable, and then 
defining cp so that it represents the plant uncertainty. 
For simplicity, (AE, bE) is chosen to be in control 
canonical form and that AE’s characteristic polynomial 
ωE is s + ω, where ω  is a design parameter. Under these 
conditions cp appears to be the following vector: 
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K

J
bc p ω:  

The performance signals μp, p ∈ P are then 
constructed using the idea of state-sharing in a similar 
way as in  [13],  [17]. 
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Fig. 3. Simulation results for the plant J=Jmax, b=bmax and 
K=Kmin in the full uncertainty set (Single QFT design) (a) 
output tracking performance and (b) control effort. 
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Fig. 4. Simulation results for the plant J=Jmin, b=bmin and 
K=Kmax in the full uncertainty set (Single QFT design) (a) 
output tracking performance and (b) control effort. 
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The J uncertainty contributes strongly in both 
magnitude and phase uncertainty in the templates at mid 
frequencies. In other words, J is the most significant 
uncertain parameter in the parameters space. In the 
following, we divide the uncertain system into smaller 
subsystems based on this uncertain parameter. So, to 
design the multiple-model based switching architecture 
the rotor inertia uncertainty is divided into two smaller 
parts, J1 = [0.01  0.05] and J2 = [0.05  0.1]. 

Now, for each uncertainty region, a QFT design is 
employed to achieve robust stability and performance 
despite the corresponding uncertainties. The resulting 
controllers are as follows: 
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The prefilters for these new designs are the same as 
the previous one used in the first QFT design. 
Eventually, a supervisory architecture determines the 
active controller, which should be placed in the 
feedback loop. This selection is based on the values of 
monitoring signal. A schematic diagram of the overall 
multiple-model based switching algorithm is depicted in 
Fig. 5. Further details on the implementation of 
Adaptive Control via Switching and Supervisory can be 
find in  [13] (chapter 6) and  [14] (chapter 5). 

To proceed with simulation, assume that the 
parameters of the real (unknown) plant are J=Jmax, 
b=bmax, K=Kmin. In addition, the hysteresis constant h in 
the switching law (7) is set to h = 0.1. Suppose that the 
second candidate controller (G1) is connected into the 
loop initially, that is, σ(0) = 1. Fig. 6 depicts the closed-
loop input–output trajectories, which shows satisfactory 
closed-loop performance. The switching signal 
identifies the “right” controllers via one switch. 
Furthermore, we set the first controller initially, i.e., 
 

 
Fig. 5. The Supervisory Based Switching QFT control 
architecture [10]. 
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Fig. 6. Supervisory Switching QFT control simulation for for 
the plant J=Jmax, b=bmax and K=Kmin (a) output tracking 
performance and (b) control effort. 
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Fig. 7. Supervisory Switching QFT control simulation for the 
plant J=Jmin, b=bmin and K=Kmax (a) output tracking 
performance and (b) control effort. 
 
σ(0) = 2, and carry out the simulation again for plant 
which corresponds to J=Jmin, b=bmin and K=Kmax. 
Simulation results are given in Fig. 7. The “right” 
controller is identified by the supervisor and the closed 
loop performance is satisfactory. 

Figs. 6 and 7 verify the time performance of the 
switching QFT design. Compare them to Fig. 3(a) and 
Fig. 4(a), and note that G1 and G2 improve the tracking 
performance yielded by G (single QFT design for the 
full uncertainty). Besides, G1 and G2 reduce 
considerably the cost of feedback. 
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6 Conclusions 
This paper dealt with the feedback performance 

limitations for highly uncertain plants. A large 
uncertainty may imply a poor tracking performance to 
avoid an excessive cost of feedback, which would 
saturate the actuators, and guaranteeing an acceptable 
robust stability. The solution proposed was to suitably 
divide the uncertainty region. Different QFT controllers 
were employed to maximize the feedback benefits and 
minimize the cost of feedback in their uncertainty 
subset. In addition, they were robustly stable in the full 
uncertainty domain. The application of QFT in 
switching multiple model based adaptive control was 
presented. The control structure proposed consists of a 
bank of candidate state-shared compensators and a 
supervisor. Each of the candidate controllers is designed 
in order to achieve the demanded performance in a 
region of the plant uncertainty. The supervisor consists 
of a state-shared multi-estimator, a performance signal 
generator and a hysteresis switching logic scheme. The 
supervisor chooses the active controller corresponding 
to the local model which best fits the plant data. 
Simulation results on a practical example show the 
performance of this algorithm for controlling highly 
uncertain plants. 
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